	[Lesson Title] Volume for Cylinders, Pyramids, Cones, and Spheres				TEACHER NAME Andrea Karpiak		PROGRAM NAME Mansfield City Schools - Adult \& Community Ed	
	Geometry: Volume				$2-6$		60-90 minutes Step 7 Jeopardy Game: 60 minutes	
	ABE/ASE Standards - Mathematics							
	Numbers (N)		Algebra (A)		Geometry (G)		Data (D)	
	Numbers and Operation	$\begin{aligned} & \text { N.3.22 } \\ & \text { N.3.26 } \\ & \text { N.3.28 } \\ & \text { N.4.6 } \\ & \text { N.6.6 } \end{aligned}$	Operations and Algebraic Thinking	$\begin{aligned} & \text { A.2.2 } \\ & \text { A.2.10 } \\ & \text { A.3.9 } \\ & \text { A.4.4 } \\ & \text { A.4.6 } \\ & \hline \end{aligned}$	Geometric Shapes and Figures		Measurement and Data	
	The Number System		Expressions and Equations		Congruence		Statistics and Probability	
	Ratios and Proportional Relationships		Functions		Similarity, Right Triangles. And Trigonometry		Benchmarks i priority bench complete list and related O	ntified in RED are arks. To view a priority benchmarks ABLE lesson plans,
	Number and Quantity				Geometric Measurement and Dimensions	G.5.2	please see the Alignments loc Resource Cen	Curriculum ted on the Teacher r.

INSTRUCTIONAL ACTIVITIES

1. Pass out Mathematics Formula Sheet \& Explanation from the GED testing service website. Encourage your students to keep this reference and write down their own notes on it how they will find volume that is more user friendly for them.
2. Watch Volume - Rectangular Prisms and complete questions 3 and 8 on Solid Figures worksheet together.
3. Watch Where Does the Volume of a Cylinder Formula Come From? Then complete questions 1 and 2 on Solid Figures worksheet together.
4. Watch Volume of a Pyramid and complete question 12 on Solid Figures worksheet together.
5. Watch How to Find the Volume of a Cone: THE EASY WAY! and complete questions 16 and 17 on Solid Figures worksheet together.
6. Watch Volume of a Sphere, How to Get the Formula Animation and complete questions 5 and 6 on Solid Figures worksheet together.
7. Complete more of Solid Figures worksheet using your formula sheet on calculating volume of prisms, cylinders, pyramids, cones, and spheres until you feel comfortable that your students can apply the formulas. Your students may draw their own three dimensional figures. Students may work together or alone on this.

RESOURCES

Computer with Internet access

Speakers

Projector/ability to project

Calculators for student use

Student copies of Mathematics Formula Sheet \& Explanation
Mathematics Formula Sheet \& Explanation [PDF file]. (n.d.). Retrieved from
http://www.gedtestingservice.com/uploads/files/0756c16704434ff71e43 c8117a5fa738.pdf
M. (2011, October 17). Volume - Rectangular Prisms. Retrieved from
https://www.youtube.com/watch?v=E8tuMaDxgJM

Student copies of Solid Figures worksheet (attached)
K. (2014, September 04). Where Does The Volume of a Cylinder Formula Come From? Retrieved from
https://www.youtube.com/watch?v=s0IOtwKMaEQ
V. (2012, April 29). Volume of a Pyramid. Retrieved from
https://www.youtube.com/watch?v=e7-am8JtREI
M. (2013, October 01). How To Find The Volume Of A Cone: THE EASY WAY! Retrieved from
8. Once this unit is complete you can play the Jeopardy Unit 8 Review of Volume with Real-World Application.
a. Divide your students into equal small groups of 2-4 students when playing.
b. They can solve the problems on individual white boards if you have them and award a prize to the winning team (optional).

```
https://www.youtube.com/watch?v=rP7ZiyYwqHo
M. (2011, June 09). Volume of a Sphere, How to get the formula
animation. Retrieved from
https://www.youtube.com/watch?v=xuPI 8o j7k
Jeopardy Unit 8 Review
Unit 8 Review [PPT]. (n.d.). Retrieved from
mccleskeyms.typepad.com/files/unit-8---review.ppt
```


Optional resources:

Individual dry erase boards

Prizes for winning Jeopardy team

DIFFERENTIATION

- The tutorial videos are giving your students the visualization they will need in order to calculate volume of prisms, cylinders, pyramids, cones, and spheres.
- The worksheet is allowing your students to solve these problems using the formulas from the videos that correlate with their formula sheets from the GED testing service website.
- The calculator will allow your students to do basic mathematical computations.
- You may allow your students to work together to solve the problems.
- The Jeopardy game is a fun way to teach and work together on Real-World application.

TEACHER REFLECTION/LESSON EVALUATION

Reflection
ADDITIONAL INFORMATION

Solid figures - complete

Find the volume of each of the figures, using the information from the description.

1) A cylinder with a radius of 10 ft and a height of 8 ft .
2) A cylinder with a diameter of 6 m and a height of 5 m .
3) A square prism measuring 6 m along each edge of the base and 5 m tall.
4) A cylinder with a radius of 2 ft and a height of 9 ft .
5) A sphere with a diameter of 8 cm .
6) A sphere with a diameter of 16 ft .
7) A cylinder with a radius of 6 cm and a height of 8 cm .
8) A square prism measuring 3 in along each edge of the base and 6 in tall.
9) A rectangular prism measuring 8 in and 5 in along the base and 7 in tall.
10) A rectangular prism measuring 3 mi and 10 mi along the base and 6 mi tall.
11) A square pyramid measuring 2 yd along each edge of the base with a height of 2 yd .
12) A square prism measuring 7 km along each edge of the base and 5 km tall.
13) A square prism measuring 2 ft along each edge of the base and 5 ft tall.
14) A cone with diameter 12 cm and a height of 12 cm .
15) A sphere with a diameter of 6 yd .
16) A cone with radius 9 m and a height of 18 m .
17) A square prism measuring 6 ft along each edge of the base and 4 ft tall.
18) A cylinder with a diameter of 14 ft and a height of 9 ft .
19) A cone with radius 10 mi and a height of 20 mi.
20) A square prism measuring 5 in along each edge of the base and 10 in tall.
21) A cone with radius 2 in and a height of 6 in.
22) A sphere with a radius of 9.4 mi .
23) A rectangular prism measuring 3 cm and 6 cm along the base and 6 cm tall.
24) A rectangular prism measuring 6 km and 3 km along the base and 4 km tall.
25) A sphere with a radius of 4.1 yd .
26) A rectangular prism measuring 8 km and 5 km along the base and 4 km tall.
27) A square pyramid measuring 6 cm along each edge of the base with a height of 7 cm .

Answers to Solid figures - complete

1) $2513.3 \mathrm{ft}^{3}$	2) $141.4 \mathrm{~m}^{3}$	3) $180 \mathrm{~m}^{3}$	4) $113.1 \mathrm{ft}^{3}$
5) $268.1 \mathrm{~cm}^{3}$	6) $2144.7 \mathrm{ft}^{3}$	7) $904.8 \mathrm{~cm}^{3}$	8) $280 \mathrm{in}^{3}$
9) $54 \mathrm{in}^{3}$	10) $180 \mathrm{mi}^{3}$	11) $904.8 \mathrm{~km}^{3}$	12) $2.7 \mathrm{yd}^{3}$
13) $245 \mathrm{~km}^{3}$	14) $113.1 \mathrm{yd}^{3}$	15) $20 \mathrm{ft}^{3}$	16) $1526.8 \mathrm{~m}^{3}$
17) $452.4 \mathrm{~cm}^{3}$	18) $144 \mathrm{ft}^{3}$	19) $1385.4 \mathrm{ft}^{3}$	20) $25.1 \mathrm{in}^{3}$
21) $2094.4 \mathrm{mi}^{3}$	22) $3479.1 \mathrm{mi}^{3}$	23) $250 \mathrm{in}^{3}$	24) $108 \mathrm{~cm}^{3}$
25) $72 \mathrm{~km}^{3}$	26) $160 \mathrm{yd}^{3}$	27) $288.7 \mathrm{yd}^{3}$	28) $160 \mathrm{~km}^{3}$
29) $678.6 \mathrm{~m}^{3}$	30) $84 \mathrm{~cm}^{3}$		

