

Step 6 - Each student will devise one complex area problem of his own and write out calculations to find total area. Problems will then be shuffled and distributed for fellow students to complete and compare with original student's work.

Step 7 - Homework assignment will be checked for evaluation. Distribute Zig-Zag Transparency Quiz, students will calculate the total area of the figure. They will need to recognize the diameter of the circle to complete the width of the rectangle. Then using the Pythagorean Theorem, students can determine that the length of the rectangle is 12 feet. They must also find half the area of the circle since the other half is already contained in the rectangle. They would then add the area of the rectangle, triangle, and semicircle together to find the total area of the figure.

Assessment/Evidence (based on outcome)
student-generated problems
homework assignment
Zig-Zag Transparency Quiz
Teacher Reflection/Lesson Evaluation
This lesson has not yet been field tested.

Next Steps

Review and introduce square measurement conversion and expansion to acres and miles and metric measurement problems

Technology Integration

Purposeful/Transparent

Postsecondary transition classes work on building geometry skills by calculating area of geometric figures.

Contextual

Students are given various situations around the home to determine area of driveways, patios, decks, rooms or any irregular figure.
Building Expertise
Students practice using substitution in geometric formulas and calculating the area of compound geometric figures.

This is a footprint of a house. Assume that each square on the paper represents one square foot. Outline different plane figures with different pencil colors. List the various shapes that are seen in the worksheet diagram. Then tally the number of plane geometric figures.

Geometric Figures

Tally
1.
2.
3.

When might we need to know the area of such irregular features such as a driveway, flower garden, a lot, or a room? Might there ever be a need to know a third dimension? What and when would that be? Discuss with your group.

Family Room Area Scenarios

Choose a partner and complete parts A and B below.
A. If you had a large floor space in your family room and wished to define one area where the children could play games on a hard surface for "driving" cars and trucks or even dancing, how many different rectangular arrangements of one foot square linoleum tiles would you have? Suppose you have 48 tiles. Use your graph paper to outline all of the arrangements. How many more tiles would it take to make a perfect square? What number of tiles would you need for the next larger perfect square?
B. Choose one of the 48 tile arrangements that seemed appropriate. Draw a diagram and add a semicircular area adjacent to the rectangle. The fireplace apron has a diameter of seven feet. Determine the total square feet required for the two features. If the room has dimensions of 18×21 feet, what percent of the area of the family room remains for carpeting? How many square feet of carpeting would be needed?

Zig-Zag Transparency Quiz

Calculate the total area of the figure. Note The hypotenuse of the triangle is 13 feet.

